Epigenomics of Plant’s Responses to Environmental Stress
نویسنده
چکیده
Genome-wide epigenetic changes in plants are being reported during the development and environmental stresses, which are often correlated with gene expression at the transcriptional level. Sum total of the biochemical changes in nuclear DNA, post-translational modifications in histone proteins and variations in the biogenesis of non-coding RNAs in a cell is known as epigenome. These changes are often responsible for variation in expression of the gene without any change in the underlying nucleotide sequence. The changes might also cause variation in chromatin structure resulting into the changes in function/activity of the genome. The epigenomic changes are dynamic with respect to the endogenous and/or environmental stimuli which affect phenotypic plasticity of the organism. Both, the epigenetic changes and variation in gene expression might return to the pre-stress state soon after withdrawal of the stress. However, a part of the epigenetic changes may be retained which is reported to play role in acclimatization, adaptation as well as in the evolutionary processes. Understanding epigenome-engineering for improved stress tolerance in plants has become essential for better utilization of the genetic factors. This review delineates the importance of epigenomics towards possible improvement of plant’s responses to environmental stresses for climate resilient agriculture.
منابع مشابه
Molecular and biochemical protective roles of sodium nitroprusside in tomato (Lycopersicon esculentum Mill.) under salt stress
Salinity stresses act as inhibitor factors of plant growth. They can change the physiological characteristics and limit the production of crops. Sodium nitroprusside (SNP) is a stable free radical which use as a signalling molecule in plants and participates in various plant’s physiological, biochemical and molecular processes and also in plant’s responses to environmental stresses. We investig...
متن کاملResponses of Transgenic Tobacco (Nicotiana plambaginifolia) Over-Expressing P5CS Gene Underin vitroSalt Stress
Salinity is a major limiting factor for plant growth and development. To evaluate the impact of P5CS gene expression under in vitro salt stress condition, transgenic tobacco (Nicotiana plumbaginifolia) carrying P5CS gene and non-transgenic plants were treated with 0, 100, 150, 200 or 250 mM NaCl for 28 days. Proline content, lipid peroxidation and the activity of some antioxidant enzymes after ...
متن کاملPlant Stress Responses and Phenotypic Plasticity in the Epigenomics Era: Perspectives on the Grapevine Scenario, a Model for Perennial Crop Plants
Epigenetic marks include Histone Post-Translational Modifications and DNA methylation which are known to participate in the programming of gene expression in plants and animals. These epigenetic marks may be subjected to dynamic changes in response to endogenous and/or external stimuli and can have an impact on phenotypic plasticity. Studying how plant genomes can be epigenetically shaped under...
متن کاملP146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress
Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...
متن کاملResponses of Accessions of Zea Mays to Crude Oil Pollution Using Growth Indices and Enzyme Activities as Markers
The performance of every plant in an environment is an indicator of how the plant can withstand the various environmental conditions. This study investigated the toxicity of crude oil on the growth performance, chlorophyll contents, enzymatic activities and oxidative stress biomarkers of eight accessions of Zea mays. The growth enzyme (amylase and invertase) activities, as well as oxidative s...
متن کامل